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ABSTRACT

An S-map from a metric space X into a metric spaceyY is a
map f such that there exists ak: 0<K <1 and for all x and y X,
d{f(x), f(y)] = k[d(x, v)]-

The set of S-maps, S(X), on a compact subset of a metric
space X under the compact-open topology and under composition
is a topological semi-group. Several theorems are given relating
the geometric structure of X to the fashion in which $(X) is topo-
logically and algebraically imbedded in C(X).

An S-homotopy on X (a compact metric space) is a homotopy
H: X® I—-X such that H: X® 0~ X is the identity map on X and H: X
® 1—- X is a contractive S-map. Also for all TeI,H: X@ T~ Xis
an S-map. An S-homotopy on X ¢EN is regular if there exists a
coordinate setC and a T, eI such that if T<T,, then H: X®T~-X
has the canonical matrix representation relative to C of a rotation
followed by a contraction. A subset of a metric space is a Regu-
lar Euler Set if it is compact, non-starlike, and supports a regu-
lar S-homotopy.

It is shown that an arc in EN is a regular Euler set if, and
only if, it is a generalized logarithmic spiral. This is a generali-
zation of a classical result obtained by Euler. Also, a proof is
given that a subset of E3 is a regular Euler set if, and only if, it
can be represented as the union of a family of logarithmic spirals.
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ON THE SHAPE PRESERVING EXPANSION
AND CONTRACTION OF OBJECTS IN E°

by
. P, Argentiero
Goddard Space Flight Center

INTRODUCTION AND DISCUSSION

It is clear intuitively that certain subsets of E? can be continuously shrunk into themselves so
that the ""shape' of the set is altered at no time during the shrinking process. A disk, for instance,
can be continuously shrunk into itself and yet remain a disk at all times. It is also easy to be-
lieve that some sets fail to have this property. Consider as an example the set below.

A continuous shrinking of such a set into itself would nec-
essarily alter its metric ratios and destroy what is intuitively
called its "shape.” It is of interest to characterize sets which
have this special shrinkability property. To provide such a
characterization, intuition can be replaced by a mathematical
description of a continuous shape preserving shrinking of a set
into itself.

The idea of continuous shrinking of a set X into itself suggests a homotopy from the identity
map X to some other map from X into X. The definition of the homotopy relation between two maps
is the following:

Definition 1: Let f , and f, be continuous transformations from a topological space X into a
topological space Y. Then f, and f, are HOMOTOPIC, if there exists a continuous transformation
H: X®I~-Y (I is the closed unit interval) from Xe I into Y such that H: X@0~Y = f,and H: X
®1-Y = f,. The map H: X® I-Y is called a HOMOTOPY from f, to f,. The homotopy relation
is an equivalence relation (Reference 1).

A shape-preserving shrinking of a set X into itself will be defined as a homotopy H: X ® I—X
such that H: X ® 0-Xis the identity map on X and for all t ¢ I; the map H: X ® T~X is shape pre-
serving. The intuitive idea of the shape of a set X is intimately connected with the ratios of dis-
tances between points in X. Hence a rigorous treatment of shape must restrict itself to metric
spaces. Also, any map between metric spaces which preserves properties of shape must preserve
ratios of distances. In other words, a map f from a metric space X with metric d into a metric



space Y with metric § is called skape preserving, or an S-map, if given any three points, z,, z,,

z, €X, then

It is not difficult to show that this property is identical with the one incorporated in the following
definition:

Definition 2: A map f from a metric space X into a metric space Y is an S-map if there exists
aK, 0 <K <1 such that for any x e Xand y ¢X, d[f(x), f(y)] = Kd[x, y]. The number K is called the
scale of the S-map f. HK <1, f is called a contractive S-map.

It will be shown that S-maps in E" are actually similarity transformations, which are defined
as maps that can be represented as a composition of a translation, an orthogonal transformation,
and either a dilation or a contraction. Such maps have received considerable attention in E°. Here,
however, S-maps will be studied in the more general context provided in definition 2.

The concept of a shape preserving shrinking of a set into itself can now be formalized:

Definition 3: A subset X of a metric space is S-shrinkable if there exists a homotopy H : X
® I - X such that H: X® 0—-X is the identity map on X, and H: X® 1~ Xis a contractive S-map.
Furthermore, for every t ¢ I, the map H: X® T~ X is an S-map.

Definition 4: A subset X of E° is starlike if there exists a point p € X such that if x ¢ X, the line

segment (p, x) is contained in X.

The starlike property, which later is generalized to arbitrary metric spaces, is closely re-
lated to the S-shrinkable property as demonstrated in theorem 1.

Theorvem 1: Let X be a starlike subset of E*. Then X is S-shrinkable.

The proof of theorem 1 will be provided in the next section. It is of interest to note that the
converse of theorem 1 is false; that is, an S-shrinkable subset of E” is not necessarily a starlike
set. A counterexample is provided by a subset ofE?; it is one referred to on other occasions.
Let the points in the plane have the usual polar coordinate representation, (r, &), and consider an
arc X with parametric representation: X = {(r, &ylr =r, et , 07 0,+a™t 4 0 5/6500}. X con-
tains the origin since we permit the parameter ¢ to assume the value of ®. This well-known arc
is called the logarithmic spiral. Intuitively it begins at a point (ro, 90) and spirals down indefi-
nitely into the origin. The positive number « is called the twisting coefficient of the logarithmic
spiral and it governs the "tightness'" of the spiraling. The logarithmic spiral is certainly non-
starlike and is now shown to be S-shrinkable. Define the required S-homotopy as follows: Let H

: X®I-Xbe such that for t ¢ I, H: X® t ~ X maps the point (ro et y O Tt 41) onto [(ro e—<{+“),<90+a'1({+at)].



Clearly H: X® 1~ X as defined is a homotopy. H: X® 0-X is the identity map; and for any t, H: X
® t ~ X is the composition of a rotation by angle t and a contraction by factor ¢™*, Hence H : X
@ t ~ X is an S-map and the logarithmic spiral X is S-shrinkable.

John Bernoulli in the middle of the eighteenth century was aware of these shrinkability prop-
erties of the logarithmic spiral. He noticed that if the logarithmic spiral is contracted by any
factor, it becomes congruent to a subset of itself. This is just a rephrasing of the S-shrinkability
property. He also observed that this shrinkability property provides the logarithmic spiral with
its well-known hypnotic powers (Reference 2).*

It remained for Euler (Reference 3) to show that this special shrinkability property of the log-
arithmic spiral is in fact characteristic. That is, the logarithmic spiral is the only twice-
differentiable curve in the plane that is both non-starlike and S~shrinkable. The differentiability
assumption permitted Euler to use certain tools he had invented in order to establish his charac-
terization of the logarithmic spiral. This information motivates the next definition.

Definition 5: A subset X of E” is an Euler Set if it is compact, non-starlike, and S-shrinkable.

The logarithmic spiral is an example of an Euler set (it is compact because it contains the
origin); and, as Euler showed, among twice-differentiable curves in the plane, it is the only Euler
set. The aim here is to extend Euler's classical result by deleting differentiability assumptions
and generalizing from the plane to E. The result will be a characterization of a general class of
Euler arcs inE". Finally, a characterization is provided of Euler sets in E®, and the significance
of this characterization is briefly discussed with respect to the shape-preserving shrinking or ex-
pansion of objects in space. Before these objectives can be accomplished, a thorough study of the
properties of S-maps is needed, the results of which will be useful in characterizing Euler arcs
inE". These results also have some intrinsic interest as a further elucidation of the algebraic
and topological properties of an important class of transformations.

PROPERTIES OF S-MAPS
There are some easily established but important facts about S-maps:

Theovem 2: I f is an S-map from M into M (a metric space) whose scale K is non-zero, f is
topological. If M is complete and K < 1, f has a unique fixed point.

Proof: The first part of the theorem is an easy application of the definitions involved. The
remainder of the theorem follows from the well-known result that a continuous contractive trans-
formation has a unique fixed point on a complete metric space.

*Bernoulli called these properties of the spiral “reproductive properties,” thinking that such properties had mystical significance.
He wanted the logarithmic spiral inscribed on his tomb with the words,"Eadem mutata resurgo—though changed I rise unchanged.”




It is next necessary to establish relationships between geometric properties of subsets of
metric spaces (properties relating to the metric) and the fashion in which the set of S-maps on a
set is embedded in a certain function space. In what follows, the symbol X will always represent
a compact subset of a metric space. A common way to topologize the set of continuous functions

from X into X is given in definition 6.

Definition 6: Let C(X) be the set of continuous transformations from X into X. A metric on
C(X) is defined as follows: Let f, g e C(X). Then

arf, g = SUP{d[f(x), g(x)] | xeX} .

The topology induced by this metric will be called the metric topology on C(X).

Another frequently used topology on C(X) is given in the next definition.

Definition 7: Let K and U be subsets of X. Define the subset W[K, U] ¢ C(X) of C(X) as follows:
WK, U] is the set of all maps f ¢ C(X) such that f(K) cU. The family of all sets W(K, Ul where K is
compact and U is open forms a subbase for the compaci-open fopology on C(X).

The metric topology on C(X) is considerably simpler conceptually than the compact-open
topology on C(X). (It is routine to show that what is defined in definition 6 is a metric, provided X
is compact.) However, the compact-open topology has several convenient properties that make its
use almost unavoidable in some contexts. The property of the compact-open topology needed here
is the one which permits us to identify homotopies on X with arcs in C(X) and, conversely, to iden-
tify arcs in C(X) in an obvious fashion with homotopies on X (Reference 1), Fortunately the metric
topology on C(X) is equivalent to the compact-open topology on C(X) when X is compact (Refer-
ence 4). Hence the metric topology can be used on C(X), while at the same time all the convenient

properties of the compact-open topology are available.

Definition 8: Let S(X) represent the set of all S-maps from X into itself. Clearly S(X) ¢ C(X)
and hence S(X) can inherit the topology of C(X). S(X) also has an algebraic structure, namely func-
tion composition. Certain relationships will be obtained between geometric properties of X and the

topological and algebraic structure of S(X).

Theovem 3: S(X) with the algebraic and topological structures defined above is a topological

semigroup.

Proof: Because S(X) is closed under composition, the result will follow if it is shown that
c(X) under composition is a topological semigroup. U ° will represent an epsilon neighborhood of
x inX. If f is a map onX, US will represent an epsilon neighborhood of f in C(X). A symbol f(x)
is an element of X, namely the image of x under f.




To prove that C(X) is a topological semigroup it must be shown that composition in C(X) is
continuous. This is equivalent to showing that for any neighborhood v fgs £s 8 €C(X) (fg of course
represents composition of f with g) of fg there exist neighborhoods U/f and Ule of f and g re-
spectively such that if f' ¢U’ and g’ cUe then ' g’ €U, .

Let € > 0 be prescribed and let x ¢X. There exists a neighborhood Ugs(x) of radius § which can
be chosen independently of x, because X is compact, so that f [Ugs(x)] c U:g(f). Now if £’ ¢US/2 and
g’ €U}, then g’ (x) €U}, ; and also, because d[f’, f] <e/2, then f (Uoy) €US - Thus £ g’ (x)
€U, and dlf’ g’ (x), fg(x)] <e. Because x ¢ X was arbitrary and § was chosen independently of
x, then f' g’ ¢US . Hence composition is continuous in C(X), and by definition this makes C(X) a

topological semigroup under composition.

Theorvem 4: Let {f_ }be a convergent sequence of S-maps on a compact subset X of a metric
space. Then, if K represents the scale of the n™ element in the convergent sequence, {fN},
lim K = K exists.

n—®

Theovem 5: S(X) is a closed subset of C(X).

Proof of theovems 4 and 5: Let {fn}be a sequence of S-maps converging to f ¢ C(X). It will
be shown that f € S(X). For any two points x¢ X and y ¢ X,

df(x), f(y)] = Llimd[f (x), f (y)] = limK dlx,y} = dlx,y) limK_ .
Hence
limK_ = K

exists and thus
d[f(x), f(y)] = Kdlx, yl

Since the points x and y were arbitrary, this proves theorems 4 and 5.
Theorem 6: S(X) is complete.

Proof: Because X is compact, C(X) is complete. Hence S(X) as a closed subset of a complete
space is complete.

It is now convenient to extend the definition of the starlike property given in definition 4 to
arbitrary metric spaces.



Definition 9: A subset Y of a metric space is starlike if there exists ap e Y so that, for every
x ¢ Y, there is an S-map f from the closed interval [0, a] (a dependent on x) into Y such that £(0)=p

and f(a) = x,

There will be no need to distinguish the sense of the word "'starlike,’ as used in definition 9,
from the sense of the same word as used previously in definition 4 since it can be readily shown
that the two definitions coincide in E», Let Y be a set in E® which is starlike in the sense of defi-
nition 4. Then there exists a p ¢Y such that if x ¢ Y the line segment

(p, x) = [p(l—t/a)+xt/a, a = d[x,p]:Oitia]

is included in Y. Now it is easy to construct an S-map f (in fact an isometry) from the closed in-
terval [0, al, a = dlp, x] into Y such that £(0) = p and f(a) = x, For 0<t < a, define

f(t) = p(l-t/a) + xt/a,

where the addition is, of course, vector addition. Clearly f(0) = p and f(a) = x, It must also be
shown that f is an S-map. Let t,, t,€[0,a]l, t, <t,. Then

t2 x'c2 t1 xt1

i) ()] = forp e T opre g -2

B [OSE

Thus f is an isometry and hence an S-map. Next it is shown that if Y, a subset of E", is starlike
in the sense of definition 9, it is also starlike in the sense of definition 4. If Y is starlike in the
sense of definition 9, there exists a p ¢ Y such that for any x ¢ Y, there is an S-map f from an inter-
val [0, a) into Yand f(0) = p and f(a) = x. It can be shown that Y is starlike in the sense of defi-

nition 4 by showing that
f[(O, a)] = <p, x) .

Let t € (0, a). Then since (0, a) is an interval and f is an S-map,
d[£¢0), f(t)] + d[f(t), f(a)] = d[f(0), f(a)] -

This implies that f(t) < {0, p) and hence f[(0, 2)] c(p. x). But since f(0) = p and f(a) = x, and
since the image of (0, a) under f must be connected, f[(0, a)] = (p, x) ; the proof is complete.
Notice that with the extension of the starlike property to arbitrary metric spaces, the defini-

tion of Euler sets provided in definition 5 can be extended. An Euler set in an arbitrary metric
space is compact, S-shrinkable, and nonstarlike in the sense of definition 9. Several other



properties usually defined for linear spaces can just as easily be extended to arbitrary metric
spaces. For instance, a subset Y of an arbitrary metric space can be called convex if for any two
points x, y €Y, there exists an S-map, f, from the closed interval [0, a] into Y such that £(0) = x
and f(a) = y. This can be shown to be a valid generalization of the convexity property as usually
defined in a linear space. Some interesting properties of convex sets in metric spaces can then be
proved. For instance if the metric space is complete, a subset is convex if and only if it has the
midpoint property (Reference 5). A generalization of this result can be found in (Reference 6).

Theorem 7: If X is a starlike subset of E*, S(X) is arc-wise connected.

Proof: Since X is starlike there exists a point p € X such that if x ¢ X, the line segment (p. x)
is wholly contained in X. It is shown that if f is an S-map on X, then there is a closed arc (a
homeomorph of the interval) in S(X) with f as one endpoint and the constant map on p as the other

endpoint. This will be sufficient to show that S(X) is arc-wise connected. This arc is constructed
as follows. For t e [0, 1] define

g, (x) T (1-t)x + tp,

where the addition is vector addition. Next, g, is shown to be an S-map. Let x,y ¢X. Then
dlg, (). g, (»] = Ha-ox+tp-@A-tyy-tpll = [[A-6Hx-»I = A-t)dlx y) .

Since x and y were arbitrary, g, is an S-map, and hence g, € S(X). Define f, = g f (f, is the
composition of g, with f). Since f is an S-map, so is f,. Now the map a[(O, 1)~ s(X)] defined
by a(t) = f_ is continuous since

d[ftl, ftz] = SUP[H (l—tl)f(x)-tlp—(l-tz)f(x)thsz:x€X]
= s [Il (£, - t,) £+ (1, t,) pll s xex],

and clearly this number can be made as small as desired by making t, sufficiently close to ¢t,.
Also notice that a(0) = f and o(1) = {constant map on p}. Hence the proof is complete.

In this proof it is interesting to notice the role played by the properties of the point peX. In
defining g, (x) as

g, (x) = (1-t)yx + tp,

success in defining a map on X was tacitly assumed. In other words, it was assumed that
for any t e (0, 1) and any xeX, the point (1-t)x+ tp was a member of X. This would not



necessarily be true if pe X were not the special point defined in the beginning of the

proof.

With theorem 7 established, a proof of theorem 1 can now be provided. The properties of the
metric topology on S(X) had been used in theorem 7. But since X is compact this topology is equiv~
alent to the compact-open topology. As mentioned before, in the compact-open topology arcs in
the function space may be identified with homotopies on the underlying space X. Hence there exists
an arc from the identity map on X to a contractive S-map and the arc lies in S(X). But this arc
obviously defines an S-homotopy. Hence X is S-shrinkable if X is a starlike subset of E°. The
following theorem incorporates an interesting fact about contractive, S-maps on a complete
Riemannian space. A proof is found in Reference 7.

Theovem 8: A complete Riemannian space which supports an into, contractive, S-map is

Euclidean.

The assumption of completeness cannot be deleted from the statement of theorem 8. It is
possible to construct into, contractive, S-maps on noncomplete, non-Euclidean Riemannian spaces

(Reference 7).

The construction of machinery necessary to establish an interesting mapping theorem on C(X)
when Xis a starlike subset of E" can now be initiated.

Lemma 1: Let f be an S-map on X and choose ¢ > 0. Let g be another S-map on X such that
geUSf ¢ S(X). Then

2¢
‘Kf—Kg‘ <wm

where M is the diameter of X.

Proof: Let g be an S-map such that g < U, and let x and y be arbitrary elements of X. Then
a[f(x), g(x)] < ¢, and d[f(y), &(v)] < . Writing

d[s(0). &) = dfeco. 0] +d[feo. £] + d[fvn), em] < 26+ d[feo, 3]
leads to
ld[e(x). ()] - d[f(x), £()]I < 2¢ .
Since f and g are S-maps, then

Ik dlx, y) - K, dlx, y}| < 2¢ .



||[

This implies

€

_2
_Kfi < d[x

x vl

g

Let M be the diameter of X. Since X is compact there exist points x’ and y' such that
dix', y'] = M.
Since x and y were arbitrary points of X, letx = x’ and y = y'. In that case
2¢
IKg - Kfl < M *

and the proof is complete.

Lemma 2: Define S, ¢ S(X) to be the set of S-maps of scale K in S(X). Then sets of the form

Us,
K1<K<K2
are open in S(X).
Proof: Let
f eL]SK .
K1<K<K2

It must be shown that there exists an ¢ > 0 such that

€
f eUy cU<SIé
K; <K<K,

This will establish the result. Since

f eUS,

<g<
KIKK2

then K, <K, <K, where K, is the scale of f. Now choose an ¢ > 0 such that



and

where again M is the diameter of X. Then, if ge U, from lemma 1

K, = K| <2—Nf-
Hence
2¢ 2¢e
K, <Kf——M—<Kg <K+ <K,
Therefore

geUsS,

<g<
Kll(l(2

But ¢« was an arbitrary element of US. Thus

Ufcus,

<K<
K{SKSK,

Lemma 3: If X is a starlike subset of E", then for any K such that 0<K<1, there exists an
f e S(X) such that K, = K where K, is the scale of f.

Proof: If X is starlike there exists a point p <X such that for any x € X the line segment

(P, x> = {p(l’t)+x(t)|te[0, 1]} ,
where the addition is vector addition. Let t, € [0, 1] and define on X the function:
a, (x) 7 p(l-ty) + xty, xeX .

This is an into function on X because of the special properties of the point p. Also e is an S-map
on X. To see this notice that

d[ato (%), & (y)] = lp(i-ty) txtyo-p(l-tg) ~veoll = Ity (x=wll = t;dlx, y]

10



Hence %y is an S-map on X of scale t,. Since t, is any point in the unit closed interval [0, 1], the
proof is complete.

Define Sy as the set of S-maps of scale Kin S(X). Let {Sg}, be the collection of such subsets.
By the natural transformation T from S(X) into {S,},, is meant the transformation T(f) = Sk - {se)x
is topologized by choosing the coarsest topology which makes the natural transformation continu-
ous. This topology is the well known quotient topology induced on {SK}K by the equivalence relation
ons(X), f~g if and only if f has the same scale as g. See Reference 8 for relevant properties of .
this topology. Also an algebraic structure is placed on {S,}, by stating that

2 KKy

Lemma 4: Let X be a starlike subset of E*. Then with the above defined algebraic and topo-
logical structures, {SK}K 1s a topological semigroup that is isomorphic to the closed unit interval
under multiplication; that is, {SK }K is a one parameter topological semigroup.

Proof: Let X be a starlike subset of E" and define a function
f[{SK}K - (o, 1]],

as f(Sx) = K. The map is clearly a one to one homomorphism. The starlike quality of X and
lemma 3 insures that f is onto. Lemma 2 insures that f is continuous since it shows that the in-
verse images of open sets under f are open. Since f is a one to one onto homomorphism, it is an
algebraic isomorphism.

To prove that f is also topological notice that in view of lemma 2, sets of the form

USg < {Sgkx
K1<K<K2

are open in {S;},. Furthermore, these sets form a basis for the topology on {S,},. Hence f is a
continuous transformation which maps basis elements of {S;} onto basis elements of [0, 1] and
thus is open. So f is topological, and the proof is complete.

Lemma 5: If X is a starlike subset of E, there exists a continuous transformation from S(X)
onto (0, 11.

Proof: The topology on {SK}K is one which makes the natural transformation from S(X) onto
{s¢}« continuous. In the proof of lemma 4, the existence of a topological transformation f was
established from {s, }, onto [0, 1] ; thus the composition of the natural transformation with f is a
continuous transformation from S(X) onto [0, 11.

11



The following mapping theorem can now be stated.

Theovem 9: I X is a starlike subset of E”, there exists a continuous transformation from C(X)
onto [0, 1].

Proof: According to theorem 5, S(X) is closed in C(X). So apply Tietze's Extension Theorem
(Reference 1) to the result of lemma 5.

Definition 10: Two maps f and g from X into X are S-komotopic if there exists a homotopy
H:X®I—-X suchthat H: X@0~-X = f andH: Xe1-X = g, and forallTeI, H: X@T~X is an S-map.

The next result is an application of theorem 3 and it has a geometric interpretation of some

intuitive meaning,

Theorem 10: Let the identity map on X be S-homotopic to a contractive S-map on X. Then the
identity map is also S-homotopic to a contractive S-map whose range is of arbitrarily small

diameter.

Proof: According to theorem 3, S(X) is a topological semigroup under composition. Also,
since the topology used on S(X) is the compact-open topology, the S-homotopy classes of S-maps
are precisely the arc-wise connected components of S(X) (Reference 1). Thus since composition
is continuous, if f, g S(X) are S-homotopic, so are f? and g*>. To see this notice that the map
T[s(x) ~S(X)] defined as T(f) = f2 is continuous. . Hence it preserves paths. Thus if the identity
map I on X is S-homotopic to f € S(X), it is also S-homotopic to f" where n is any positive integer.

Now let f be a contractive S-map on X. Let p €X be the fixed point of f (theorem 2). The point
p is also the fixed point for f*. For any x X,

dff" 0. (@] = d[f"eo.p] = K dlx,pl = K7 dlx p)

So if M is the diameter of X, then K M is a bound on the diameter of the range of f¥. But since f is
contractive, K,<1 and it can be insured that the range of f" has as small a diameter as desired
by picking a sufficiently large n. Hence if the identity map on X is S-homotopic to a contractive
S-map f, it is also S-homotopic to f” whose range can be made arbitrarily small by choosing a
sufficiently large n. This completes the proof.

Theorem 10 has the following intuitive meaning. It says that if a compact set in a metric space
can be shrunk at all to a smaller subset of itself in a continuous fashion which preserves shape,
then it can be continuously shrunk to as small a set as desired in a manner which preserves its
shape. A necessary condition for S-shrinkability is now provided in arbitrary metric spaces.

Definition 11: X is curled if there exist two points x, y € X and a positive number ¢ > 0, such
that if x' €U and if y' €US, then d[x’, y'] >2dlx, y].
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For example the set shown in the introduction is curled. So is the union of two closed disjoint
line segments. In fact, every compact, disconnected subset of a metric space is curled.

Theorem 11: The property of being curled is preserved under S-maps.
Proof: The proof is a straightforward application of the definitions involved.

Theovem 12: Let X be S-shrinkable with S-homotopy H: X®@ I~X. There exists a t, ¢ I such
that H: Xe t,~ X is an isometry, and if t > t, H: X@ t ~ X is a contractive S-map.

Proof: Let the map f, represent H:Xet~X. Define the set 8¢ I as the set of all T such that
f, is an isometry. 8 is bounded and hence has a least upper bound t,. Also t,<1 since f,is by
definition of an S-homotopy a contractive S-map. All that needs to be shown is that t; ¢ 5. Assume
that t, e 3. Then fto is a contractive S~-map. But since t, is the least upper bound of 8 and be-
cause of the continuity properties of the homotopy H: X® 1~ X, a sequence of isometries f, can be
constructed conve;'ging to f tg? 2 contractive S-map. (H:XeI ~X defines a continuous transforma-
tion from I into C(X).) But a convergent sequence of isometries in C(X) must converge to an
isometry. This is a contradiction. Hence t, ¢ 8, and the proof is complete.

In view of theorem 12, given an S-shrinkable set X (X compact), no generality is lost if it is
assumed that there exists an S-homotopy, H: X@I -X, such that f, for 0<t is not an isometry. To
show this, let H: X® I~ X be any S-homotopy on X. According to theorem 12, there exists a t, such
that f, is an isometry on X and if t > ¢, f, is contractive. Consider the homotopy H: X® [t,, 1] ~X
obtained by restricting H to X e [t 0r 1] . An isometry on a compact subset of a metric space is
onto. Hence f, has an inverse f_ ! which is an isometry on X. Define a new homotopy G: Xe [to: 1]-X
asG, = f f ', where G, = G: Xet~X, te [t;,, 1]. Notice that Gtois the identity map on X and
for ¢[t,, 1], G, is an S-map on X. A reparameterization of G such that G, becomes G, will result
in an S-homotopy on X such that the only isometry in the homotopy is the identity map G,.

Theovem 13: If X is curled, it is not S-shrinkable.
Proof: Assume to, the contrary, that X is curled and S-shrinkable. Then there exist points
xeX andy ¢ X and a2 number ¢ > 0 such that if x’ eU.© and if y' eU®, then d[x', y'] >d[x, y]. Let

H: X® I~ X be the S-homotopy on X. Again letting the symbol f, representH: tot—X, tec I, a
t, € I can be named such that if 0 < t <t , then

where the metric in question is of course the one defined in definition 6. But f,is by definition
the identity map i on X. Hence f,(y) €US and f  (v)eUS for 0 <t <t,., But by theorem 12 we can
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assume that f, is a contractive map of scale K, <1. Hence

dff, (x), f, (»)] = K.dlx, y] <dlx, y]

But this is a contradiction since f, (x) €U,  and f, (y) €U . Hence no set X can be both curled and
S-shrinkable.

Corollary: Let Vbe an S-shrinkable, compact subset of a metric space. Then V is connected.

Proof: Assume to the contrary thatV, an S-shrinkable, compact subset of a metric space, is
not connected. Let v, and v, be sets of a separation of V. The sets V, and V, must also be com-

pact. Define the distance between Vv, andV, as

afv,. v,] = INF[d[xl, REAAES £V2] :

Then

dfv,,v,] = 8 # 0,

and furthermore there exists x,' ¢ v, and x, ¢V, such that

Now let U’/2 be an open neighborhood of x,' of radius 8/2. Notice that
1

8/2 -
le, aVcVv, .

Let Ux52,/ 2 be an open neighborhood of x,” of radius §/2. And again we have

8/2
U{2aVeV, .

Now let

§
xl"ele,/zﬁV,
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and
x, €U 52V .
Then x," ¢V, and x, €V, and
dfx,". x2”] 28 = dx/, x2']

This indicates according to definition 11 that V is curled. But by theorem 13 this implies that v
cannot be S-shrinkable which is a contradiction. Hence V is connected.

S-MAPS INE”

It will be shown in this section that by using the linear structure of E® a convenient represen-
tation of S-maps in E" can be obtained. With the aid of this representation a characterization is
possible of a general class of Euler sets in E2?, and enough information can be obtained on the
structure of Euler sets in E" to obtain a significant generalization of Euler's characterization of
Euler arcs in E? to a similar characterization inE".

Let f be a contractive S-map on E" with scaleK < 1, Define the coordinate set C as an ortho-
gonal coordinate set whose origin is the fixed point of f. Define the maps f, and f, as follows:

1
£, = I

and

f,(x) = Kx,

where x is a vector with components given relative to € and the multiplication indicated is of
course scalar multiplication of a vector. Notice that for vectors xand y in E",

1 1
dlf, . £, (] = gd[f®, (] = f [k 7] = dX 7]

Hence f, is an isometry which has a fixed point at the origin of the coordinate set C. This implies
that relative to the coordinate setC, f, is an orthogonal transformation. The map f, is clearly

a simple contraction with contractive coefficient K. Since f = f, - f,, we have proved the next
theorem.
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Theorem 14: Let f be a contractive S-map on E*. Then with the proper choice of coordinate
set, f can be represented as a composition of an orthogonal transformation and a contraction with
contractive coefficient K, the scale of f.

Theorem 14 permits the following useful matrix representation of an S-map on E".

Theovem 15: Let f be an S-map on E* with scale K < 1. Then there exists M numbers ¢;, &,, *** &
M<n/2 such that with the proper choice of coordinate set, the matrix of f has the representation

£K
1K |

where
Kcos ¢, K sing,
% -K sinq’)i Kcosc,‘lﬁi
for i<M, with zeroes in all other places. The numbers ¢,, satisfying 0 < ¢, < 27 are called the

rotational coefficients of f and are nonzero.

Proof: It is well known (Reference 9) that an orthogonal transformation on E° has associated
with it a set of M nonzero numbers ¢,, ¢,, + - + ¢, such that with proper choice of coordinate set
it has the matrix representation

1
£1

+1

Q 0-2 .
Ty

cos @, sin qbi
o, = .
i ~sin ¢, cos ¢’i

for i <M, with zeroes elsewhere. This result together with theorem 14 proves the theorem.

where

In characterizing Euler arcs in E", Euler considered only S-maps which had their fixed points
at the origin of a fixed coordinate set C. In effect this implied that there exists a single coordinate
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set for E? in which all S-maps had the convenient representation of theorem 15. Hence Euler
actually characterized a certain subclass of twice differentiable Euler arcs in E2. An equivalent
assumption inE" would be to assume for each S-homotopy H: X®I ~X onXcE", the existence of a
coordinate set C such that for t €I, f, = H: X@t ~X has the representation of theorem 15 relative
to C. This restriction on S-homotopies is somewhat stronger than necessary. However, it is
necessary to restrict S-homotopies in a somewhat weaker fashion.

Definition 12: An S-homotopy H: X@ I~ X on X cE® is regular if there exists a coordinate set
Canda t, €I, 0<t, such that if t <t then the S-map f, = H: X@ t ~ X has the representation of
theorem 15 relative to C. An Euler set X cE" is a vegular Euler set if there exists a regular S-
homotopy on X.

Intuitively speaking a regular S-homotopy on a set X represents a shrinking of X such that at
least in the beginning of the shrinking process a specific point in X remains fixed (the origin of the
coordinate set C), and the rotations which occur are restricted to take place on M specifically as-
signed two-dimensional subspaces. This condition rules out some pathological situations which
are very difficult to consider. This condition also insures that in a sufficiently small neighbor-
hood of the identity map in S(X), the S-maps in the S-homotopy have the same number of rotational
coefficients. Another way of viewing this condition is to observe that it permits an algebraic char-
acterization of the S-maps in the beginning of an S-homotopy in terms of their matrix representa-
tion relative to a given coordinate set, rather than simply a geometric characterization as provided
in definition 2. Notice also that in E? this condition reduces to an insistence that the S-maps in
the beginning of the S-homotopy have the same fixed point. Hence in E2, the regularity assump-
tion is somewhat weaker than the assumption Euler applied. At this point the following convention
is adopted. It is assumed that if X is a subset of E*, it is not contained in a subspace of dimension
lower than n, Clearly no loss of generality is incurred by this convention, and it is a convenience
in the proof of the next theorem.

In the case of a regular S-homotopy, the S-maps in the homotopy in a sufficiently small neigh~
borhood of the identity map can be given a representation somewhat simpler than that of theorem 15.

Theorem 16: Let X be a regular Euler set in E® with regular S-homotopy H: X@I-X. Then
there exists a t; ¢ I and a coordinate set C such that if t <t,, then the S-map f, = H: Xe t = X has

the representation relative to C as
K
o, O
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where
B K, cos ¢i,: K, sin¢i’t
e. - . ’
: -K, slnngi't K, cosqﬁi't
i<M, and 0 <¢, < 27 are the rotational coefficients of f,.

Proof: Let X be a regular Euler set with regular S-homotopy H: X@I—X. By theorem 15 and
the definition of a regular S-homotopy, there exists a coordinate set C and a t; ¢ I such that if
t <t, then f_is represented relative to C as

where
K, cosd)i't K, sinqS.l’t

€ 7 <—Kt sing; . K, c05¢i_t> ’
i<M,and 0<¢; , < 2m i<M are the nonzero rotational coefficients of f . The difference between
this representation and the one in the statement of the theorem is the possibility of negative signs
appearing in front of K, in one of the first L diagonal elements; L = n~2M, Assume that for every
t' ¢ 1 there exists at <t’' such that f, has a-K, in one of its first L diagonal elements. We search
for a contradiction. Assume that the it"diagonal element i <L in the representation of f, is-X,.
Let X be in X and let x, be the it" coordinate of x. Then the i*" coordinate of f, (x) is - K, x,.
Hence the distance between % and f, (%) is at least as great as (1+K,) |x;|. Let b, = max [|xi| L x,
is the it" coordinate of X e X|. The number b, is the maximum i'" coordinate over all points in
X. Letb = minfb,, i< L]. Since it can be assumed that X is not contained in a subspace of E of
dimension less than n, then b > 0. Let {t’.} be a sequence of points such that limt, = 0 and such
that for every j the map, f, has at least one -K, is the first L diagonal places in its representa-
tion relative to C. Then the distance between f, and i, the identity map onX in the metric on
S(X), is at least as great as (1 + ch) b. As j appjroaches infinity, this term approaches 2b. But
this is impossible since as j approaches infinity f, by construction and by the continuity proper-
ties of a homotopy must approach the identity map % in the metric of S(X) and hence the distance

between f, and i must approach zero as j approaches infinity. Hence it is concluded that there
exists a tojsuch that if t < t,, then f, has the representation stated in the theorem.

The usefulness of theorem 16 can be demonstrated by switching from rectangular coordinates
on E" to generalized cylindrical coordinates. Let X be a regular Euler setin E” and let H: X®I—X
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be its regular S-homotopy. Then there exists a t, € I such that for t <t, there exists a coordinate
set C such that f, has the representation of theorem 16 relative to C. Hence on an L dimensional
subspace of E*, f, is a simple contraction of contractive coefficient K,. On each of M two-dimensional
subspaces, f, is represented as a rotation and a contraction. On the first two-dimensional sub-
space in question, f, is represented as a rotation through angle ¢, , composed with a contraction

of contractive coefficient K,. On the L. dimensional subspace on which f, is a contraction, ordinary
rectangular coordinates are used to specify the projection of a point p into this space. In each of

the M planes on which f, is a rotation composed with a contraction, ordinary polar coordinates are
used to specify the projection of a point p on the plane in question. What is achieved is a set of
cylindrical coordinates of a general point p ¢E,

P = (zy02zy iz, 01,0, 00, 0)
which has the following property for t < t:
fo(P) = (2K 2K ooz Keor K, 0,40y o ro KL 0,46, r KL G 4 L)

Hereafter, when speaking of a cylindrical coordinate set relative to C, it is this cylindrical co-
ordinate set that is intended.

REGULAR EULER SETS IN E"

The structure of regular Euler sets in E" can now be studied. In what follows, X is a regular
Euler set in E* with regular S-homotopy H: X@I ~X. There exists a coordinate set Cand a t,¢1
such that if t <t , then f has the representation of theorem 16 relative to C. The nonzero num-
bers ¢, ., ¢,, -+ - ¢, . are the rotational coefficients of f,. Notice that C can always be choosen
such that ¢, ., i <m, approaches zero as t approaches zero. The scale K, of f approaches one
as t approaches zero. Define the function

g, (t)

n
S

i<m., Derivations of characterizations of various projections of an Euler set into orthogonal sub-
spaces will be performed. With the aid of these characterizations the regular Euler arcs in E®
will be characterized and thus generalize Euler's result into E*. This will be accomplished by
characterizing the projections of X into various orthogonal subspaces in terms of the behavior of
the functions g; (t), i<m, as t approaches zero.

Let p, be a point in X. Relative to p, and for every t < t, the following sets are defined:
Y, = {f:" (Pg):0<n< oo},Where f? represents the composition of f, with itself n times; and with
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cylindrical coordinates relative to C, for every

t <ty Y, = {(zl,zz,"'zL,rl,Gl,rz.Qz,"-rm,ﬁm)|zl = 21,08-{’ z, = zz’oe"ﬁ,--'zL
= ZL,oe-{’ Ty, T Tio e_/3'91 - 610_{:_11:(%& r, ° l'az.oe-/ﬂ'ez = a0
_%&i(i;_{’ r, = rmoe'/g’,ﬁrl1 = Gm'o—'g,lm—k%/ﬁ:0§fﬂ§°°},
where
(21.0’ Zaot " T %00 T100 91,00 Ty0' 920 " Tmoo em.O)

are the cylindrical coordinates of p, relative to C. Notice that ¥, <X for t eI,
Theovem 17: TFor every t <ty, ¥, cv,.

Proof: Letpey,. Then there exists an n such that p = £” (po). The cylindrical coordinates
of p relative to C are

= n n P n n + n v n
p (zl,OKt'z2.0Kt’ z, oK oK O, ne, 1, KM 6,,tned, rmvoKt,vaO'*'nq.‘Jm‘t).

s

Now let

L' = —n{nKt

(L' is positive since K, <1). Then p can be represented as

(bl,t [

= L e e -L - ' -L
P (21,0e 1 Z230€ 7 zZ o€ " T8 0, inK, L' r,oe ™ 0 00

qut ’ Qsmt
_£nKt LI’ e rm'Oe k ’em,O B '{I‘)Kt LI)

This proves that pey,. Butp was an arbitrary point of y,. Hence vy, cv,.

Theorem 18: For any € >0, there exists a t’ <t, such that if t <t’ then for any point pe 7,
there exists a point p’ €y, such that dlp, p'] <€,
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Proof: Define a map 7 from [0, ©] to v, as

- - - _ - 1t -
(4) = (21.06 1, Zyq€ 4. 2, o€ £, Ti0€ 1, €10 ™ TnK, iryoe £, 8.0
¢2.t - ¢m.t
- "EnKt /E’ : rm,0 € {’ em o 'f/l'lKt ,ﬂ)

This is in fact the parameterization map used to define the arc v,. Let p be any point on v, t <t,.
Then there exists an L’ such that 7(L') = p. There exists an n such that

“ndnkK, <L’ < - (n+1)4nK, .

But

T(—n'ﬂnKt) = pyey,, (- (n+1)/EnKt) = pyey, -
In fact p, = £ (p,) and p, = fott (Py). It must be shown that, assuming t is sufficiently small,
d[p1’ p]§ d[pl’ p2].

The distance between the projections of p, and p into the L dimensional subspace in which
is a contraction, is seen to be

_ ) 5
{[21,0 (en tn Ke ‘e_L'>:| st [ZL.O <en & Ke _ e_L,>]

n’f/nl( oy !
e t wge L

Vo)t (200)2 4 (200)?

By similar reasoning it is seen that the distance between the projections of p;, and p, on this L
dimensional space is

Ak (nriyd Kt~ }/(21,0)2+ (22.0)2 % " (21.0)?

Hence in this L dimensional subspace the distance between the projections of p, and p, is greater
than the distance between the projections of p, and p in this space.

A similar result is proved for the m two-dimensional subspaces on which f, is a rotation
composed with a contraction. Consider the distance between the projections of p, and p on the i*"
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such plane, i <m, The ordinary cosine law gives this distance as

2 1/2
Inx -L'+adnk é;,
[(ri,te—{)2+ (ri.ten " ") —ri?te "t cos nKtt (L'-n/ﬂnKt) ,

and the distance between the projections of p, and p, on this two-dimensional subspace is

2 2 1/2
(n+1)dn x, Y ndn k, , (antDinx,
r; e tlr, e “r e COSd)i't .

Since

-ndnK, SL'S -(n+ )oK, ,

it is seen that the expression for the distance between the projections of p, and p, on this sub-
space is greater than the corresponding expression for the distance between the projections of p,
and p provided ¢, , is such that 0 <#,, t<7/2. This follows because

>4, , (L' -nink,)/inK, |

B .

1,

and because the cosine function is monotone decreasing in the interval (0, 7/2]. Let t, <t, be
such that if t <t , then 0 <,  <7/2. If t<t, then for any p €7, there exists anL’ such that
p = 7(L") and there exists an n such that

-ndnK, <L’ <-(n+D)4InK, .
Defining

T - (n/{',nKt) ,

el
-
it

and

i

P, T(-(n+1)'ﬁnKt) )

it has been proven that the distance between the projections of p, and p, on the L dimensional sub-
space on which f, is a contraction is greater than the distance between the projections of p, and

p on the same subspace. Moreover, the same thing is true on each of the m two-dimensional sub-
spaces on which f, is a rotation followed by a contraction. Since the orthogonal sum of these
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subspaces is E" this proves that
d[p,. p,] > d[p,. p] .

But
dlp,. p,] = dffr (re). £871 (Ro)] - d{f;' (Po). £[E0 (po)]}.

Given ¢ > 0, choose t, such that if t, <t,, and if t <t,, then f is within an e-neighborhood of the
identity map I in S(X). Then

d{ft" (Po). £, [ - (Po)]} <e .

This implies that d[p,. p] <e. But p, €y, cX. This completes the proof.

Now consider a sequence {t ;} such that limt, = 0. We focus attention on the m sequences
,—~m
{gi (tj)} where g, (t) = 4n Kt/¢i,t . Let i = 1, Then we distinguish three possibilities:

1. The sequence {gl (tj )} is an unbounded set of points.
2. The sequence {gl (t; )} is a bounded set of points with at least one nonzero limit point.

3. The sequence {gl (t; )} is bounded and has just one limit point at zero.

If the first case holds, a subsequence {t '} can be defined such that

lime, (&) = —=-

If the second case holds {t,'} can be defined as a subsequence of {t;}which has the property that

lime, () = & 7 0.
If the third case holds {tj’} be simply defined as {t;} = {t,'}, and thus
limg, (t;) = 0.

j
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In the same fashion, the sequence {g2 (tj')} can be considered and a subsequence, {t,"} of {t;'}s
can be derived which would have the property that either

line, (&) = -=.
line, (1) = o % 0.
or
132‘)1g2 (tj") = 0.

i

Proceeding in this fashion until the m functions g; (t), i <m, have been exhausted, a sequence is
obtained which again can be called {t j} and about which can be stated the following theorem.

Theorem 19: There exists a sequence {t;}, limt, = 0 and integers m’, m", 0 <m’ <m" <m such
jooo
that with the proper reindexing of functions g, (t), i<m:

limg, (1) = o 40
for i <m’;
}_i,‘ggi(ti) = e
for i such thatm’ <i<m"; and
limg, (tj) = 0

j=®

for i such that m" <i <m,

Now let the integer m" be defined as in theorem 19, The following theorem can be proved.

Theorem 20: There exists a set of m-m” orthogonal two-dimensional subspaces on each of
which the projection of X is a disk.

Proof: Let the m functions g; (t) be reindexed as in theorem 19. Let i be such that m” <i <m,
Consider the two~dimensional subspace E? on which the rotational coefficient ¢, , is defined. For
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t <t,, the projection of the arc , on this space is the arc parameterized as

. 2.
(r,0) | r=r, e 0=6-Fag £:0<4<o} -
. . ¢

We can reparameterize this arc and express it in terms of the function

ink,
g; (t) = &

)
i t

as
{(r. ylr = ri,oeh(t)S, 6 =0, ,+S: 0_<_S§°°} .
The reparameterization is accomplished by setting
s = -g/l(tyt .
On the same two-dimensional space E;??, define the set

{(r, o)ylr = T 0 = Hi‘O+S:O§S§°°} .

What has been defined is a circle centered at the origin and passing through the projection of p,,

the arbitrary point in X, onto this space. For any S’ and any ¢, there exists a j’ such that if t = t;,
i >i', then the points

(ri,o' Oi0t SI) ’
and
are within a distance ¢/2 of each other. This follows because
l_i_fﬂgi (tj) =0,

j
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m”<i. Let p, be a point on 7, whose projection on the two-dimensional space E? in question is
g;(t)S ! ]
("i,oe ' 'Hi,o+s)'

By theorem 18, there exists a j”>j’' such thatif t = t;, j >j", then there exists a p, ¢, such that
d[p,, p,] < €/2. But ¥, cX; hence p, ¢X. Also the distance between the projections of p, and p,
must be less than ¢/2 provided t = t,, j >j”. But the point

(ri,o' Oi0t S')
is within a distance of ¢/2 of the projection of p,. So it can be concluded that the point

(ri.O’ g, o+s')

1,

on the assigned two-dimensional subspace is within a distance ¢ of the projection onto this space
of p,ey, cX provided t = t;, j>j". The setX is compact. This implies that all its projections
are compact and hence closed. So the point

(ri,O' 90 +S’)

i,

is in the projection of X into the subspace in question. Since S' was arbitrary it has been demon-
strated that on the two-dimensional subspace on which ¢, ., is defined, the projection of X contains
a circle centered at the origin of C and passing through the projection of p, onto this space. By the
corollary to theorem 13, X is connected, which implies that its projection sets are also connected.
These facts, together with the facts that the origin of Cis in X and hence is in all projection sets

of X, and the p, was an arbitrary point of X, imply that the projection of X onto the two-dimensional
space on which ¢, is defined, m” < i <m, is a disk.

Next, the projection of X into the complement is characterized with respect to E” of the ortho-
gonal sum of the m~ m” two-dimensional subspaces on which the projections of X are disks. Letn’
be the dimension of this space, where n’ = n-2(m-m"), Call the space E" ‘. For t<t, the pro-
jection of . into this space can be characterized as:

Y T {(21’ Zy iz, T 00, T, Oy trr Oy w6
= -4 - -£ = -4 = -4
| z, z, 08 " 2, z,5€ " z, z, g€ T, T, o€ ,91
= -1 = "ﬂ = -~ “en
0078 (D) T, To08 10, 6,078 1 ()1, Tot
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_ - - - = -£ = —
- rml,Oe/£' Our T Ouro g () r g =m0, = Onrer,0” Baruy (D1, Tmo
= I'm II' 0 e—/ﬁ, em " = em II, 0 - gl‘l"l—"1 (t) /ﬁ : 05 &5 m} :

Of course, if m” = m or, in other words, if there exists no two-dimensional subspaces on which the
projection of X is a disk then ¥,/ = 7, and E*’ = E*. In this case the characterization of the projec-

tion of X into E*' is actually the characterization of X itself inE". An arc is defined in E*' as
follows:

Moo {(zl'zz’ 2 Ty 045 150 Gy, Tntmn) | 21
= zl.oe_/g, z, = zz,oe—/a, z, = zr_‘oe"'ﬂ,rl = rl‘oe_'{,’,ﬁ1 = 0,07y £, T,
= rz_oe_'ﬂ,ﬁ2 = 92‘0—0.1'1{, T = rm,'oe_’r’, 6, = Ot o™ Gt 1, Tt
= r"l,,r1‘<)e"t]’,49m,+l T Gaiiygr T Tpe = rm,,'oe_’ﬁ, 8 . = Em,,’o:Of/ﬂfm}

Theorem 21: The arc M is contained in the projection of X into E*'.

Proof: For any point p e it is shown that for an arbitrary ¢ > 0 there exists a point p’ €X such
that the projection of p’ into E*’ is within ¢ of p. Let {t]. } be the sequence with the properties de-
fined in theorem 19. By theorem 18, there exists a j’ such that if t = t,, i>i’, then for every
point p, on 7, there exists a point in X within a distance ¢/2 of p,.

Let p be a point in A, Then there exists an L’ such that

’
= -L -L P -L =L - -1 =L
P (zl,Oe v Z0€ Z 0 " s Tyo€ " 107y 1, T20€ Y50
-1 -L' 17+ _— Lt
-a, 'L, T N L N A A R -
Define the point
’ [] ’
0 = -L -t L. -{ -L
p ey P = (z;08F .z, Z 08 i T 20,
’ 1]
- - -1 oo -L g1 '
g ()L r, e, 6, g ()L, L R A - (t)L’)
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The points p and p? differ only on their m" angular coordinates. For i<m’, the difference in their
ith g coordinates is
6

e tL'= 8 ot (DL T IL' [gi_l(t) _"'i_l]l ;

i,0
for i such that m’ <i <m", the difference in the i*" & coordinate is

[6:,0-6,t& (YL ] = |4 et (D) -

But by theorem 19, the sequence {tj} has the property that for i <m’,

li.mgi (tj) a; .

-

and for m’ <i<m"” we have

1
!
8

limg, (t;)

Hence for a sufficiently large j' we can insure thatif t = t;, j>j’ then the difference in the cor-
responding coordinates of p and p? can be made arbitrarily small. This proves that there exists
a j”>j’ suchthatif t = t;, j>j’, then the distance between p and p. is less that ¢/2. Butp? is
in 7, which is the projection of v, into E*'. Hence there exists a p, ¢ ¥, such that the projection

of p, into E"' ispl. Since t = t;, j >j" >j’, there exists a p’ ¢X such that dfp’. p,]< €/2. Hence
the distance between the projection of p’ in E*' and the projection of p, into e, p is also less
than ¢/2. Hence there exists a point p’ X, and the projection of p’ into E” "is within a distance €
ofper. But ¢ >0 was arbitrary and p was an arbitrary point in A. Hence since the projection of

X into E*' is closed this proves the theorem.

Since for each i >m’ the i*h & coordinate of points on X is independent of the parameter 1, it is
seen that the projection of A on E;? is a straight line. A simpler representation of \ can then be
presented by converting r, and ¢, into rectangular coordinates z;, z;,, by means of the equations
z, = r; cosf, and z;,, = r; sin®;. Inthat case, for any 4
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The parameterization of \ then takes the form

_ - - - -4
A= {(21’22’ RETAEE STUCRE PN RS SN BT zl‘oe{, z, = z,,e7", z,,
= "E = "’E = - -1 = "ﬂ = — -1 o e
Zpro® Ty Ti0€ G, 810 " @t 1, Thot 56, 00 = 2 ' s Tt
= rpeetie, = 8. -alli0<A<o} L = L+ 2m-m')
m’,0 ' Ym'! m',0 m' ° - he ’ "

Theorem 20 states that on certain two-dimensional subspaces E2, m’' <i<m", the projection of X is
a disk. Theorem 21 together with the arbitrariness of P, € X shows that on the complement space
E*' with respect toE™ of the orthogonal sum of these two-dimensional subspaces, the projection of

X is the union of arcs with parameterization similar to A.

Theovem 22: Let X be a regular Euler set in E*. Then with the proper choice of coordinate
set there exists an orthogonal set of D’ two-dimensional subspaces, 0<D’ < n/2 on each of which
the projection of X is a disk. Furthermore, there exist D nonzero numbers, a;, i <D, a;, # 0, such
that on the complement space of E*' of the orthogonal sum of the D' subspaces on which the pro-
jection of X is a disk, called E*', the projection of X can be represented as the union of arcs that,
with properly chosen cylindrical coordinates, can be parameterized as

AE {(21’ Zo» Zys Ty, 04, 1,0, Tpo 913) | z, Tz oe_{" Z, T Z,, e_’E, 23
Tz oe—/ﬂ' LT Tio e-{’ g, = 010~ a, ' 4, I, ~ l'2,0'3_{’ o,
= 9, —al_l/ﬂ, ry, = rDoe—'ﬁ, o, = QD'O—aD"lf OSLEOO} ,
where
(zl,ozz,o’ tZior T P00 Tae Oa00 T Tp,0° gn,o)

are the coordinates of a point in E»' which is the projection of a point p, € X.

This theorem has some important implications.

Corollary 1: Let X be a regular Euler set in E2. Then there exists an « # 0 and a suitable
coordinate set such that X can be represented as the disjoint union of arcs of the form

N {nols = orgetie = g -atg 0t s},
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where
(ro, 90) € X .

Proof: If X is a regular Euler set in E2, then the integer D' associated with X as defined in
theorem 22 must be zero. This follows because otherwise X would be a disk and hence starlike,
Theorem 22 then implies that either X is represented as the union of rays

{(zl,zz)|z1 = 2z 0e_{,z = 22‘0e"6205_f[’,5°°},

or as the union of sets of the form

{(r,6)|r = roe—'ﬁ,ﬁ = Qo-a'lfﬂ10_<_f€§°°}-

The first possibility can be ignored since this would also make X starlike. This completes the
proof.

Corollary 1 constitutes a characterization of Euler sets in E? since any set representable in
the fashion indicated in the statement of the corollary can readily be shown to be an Euler set. The
following theorem is the major result of this section.

Theovem 23: Let X be a regular Euler arc in E°. There exist D nonzero numbers a , a,, « - - ap,
and a coordinate setC such that relative toC, X can be given the cylindrical coordinate parametric

representation
= .. PR = "E = -’{)/

X {(21722, zp, r1,91,r2,92, rD,QD) l z, z, 0 vz, = z,45eY, rrzp

- -4 - -4 - _ -1 - -4 - -

z, o8 " T, T e ,81 91'0 a; £, r, = r,,¢ ", 92 = 492'0 - a, £, r
= r e_’ﬁ 8 = 8 -a 14 054 <
D,0 * Yp D,0 V= !
where
(zl,ozz.o’ "tz Tro0 F100 Ta00 P20 777 TLo gn,o)

are the cylindrical coordinates of a point in X relative to C.
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Proof: LetX be a regular Euler arc inE", Then there exists a regular S-homotopy H: X®I-X
on X. There exists a coordinate setC and a t ¢ I such that if t <t , then with respect toC, f, = H: X
@ t ~ X has the canonical representation of theorem 15. There existD two-dimensional subspaces
relative to C such that f , t <t , on each of these subspaces is the composition of a rotation and a
contraction. According to theorem 20, the projection of X onto some of these two-dimensional sub-
spaces may be a disk, But this is not possible. Let i <D and consider the i'" two-dimensional
. subspace E? on which f_, t<t,, is a contraction composed with a rotation. It can be shown that
the projection of X on this subspace is not a disk.

Since X is an arc let 7[I ~E" ] be a parameterization function. It is assumed that the function
7 is one to one. The map f, is a transformation from X into X. Hence the composition map
e, = 71 f 7 is a well defined continuous transformation from I intoI. Let the pointL’ ¢I be such
that ~(L') is the origin of the coordinate setC. If t <t , e (L') = L' since for t <t , 7(L') is the
unique fixed point of f, . Alsoif 4 #L', e (£) # L. Also notice that if t is sufficiently small, K,
is nonzero and hence e, is one to one. These results imply that by choosing a sufficiently small t
in order to insure that f, is sufficiently close fo the identity map in the function space S(X), it is
certain that the following conditions are satisfied:

1. e, maps the interval [0, L') into (0,L') andforall £e[0,L'), e, (£)>L.

2. e, maps the interval (L', 1] into (L', 1] and for all L e (L', 1], e, (£)<1L.
Now consider the subarc [T(’E): £ € [0, L’)] = X. Define R, (£) and 6, (£) to be the i*"r and g
coordinates of 7(£). The projection of the point 7(¢,) ¢X,, on E, is (Ri (£,),6,(2, )) . It will be
shown that the projection function on X, is one to one by showing that the function R, is monotone
decreasing. This will be done by demonstrating that the function R, has the property that for all

1, €[0, L") there exists an 4, such that £, <£,, and if € is such that £ <£ <4, then R, (£,)>R, (1).

29

Let t’ €I be such that if t <t', then e, satisfies conditions one and two. Also, for every point
peX, let o, be the orbit of p under the S-homotopy H : X®I-X. According to the first condition, for
all £e[0,L"), e, (£)>4. Then for every p € X, there exist{,, 4, ¢ [0, L'), such that £, <4, and
7(4,) =p and 7(¢,) = £, (p). K L0, L'] is such that £, <4 <%,, then because the orbit ofp, 0_,
is connected, there exists a t e [0, t'] and 7(2) = f_(p). If the i*"R coordinate of 7(£,) is R,
then the i ™™ R coordinate of ~(?) is K R, () and we have R, ({,)>R, (£). This implies that the
function R, is monotone decreasing and hence the projection of X, on E? is a one to one map. But
a one to one map cannot raise dimension. Thus it is shown that the projection of X, on E? is one
dimensional.

Define the subarc X, as

X, = [r(h):te', 1]] .

2

By the same reasoning we can show that the projection of X, on E? is one dimensional. But the
. projection of the arc X, onto E? is the union of the projections of X, , X,, and the origin, ~(L'). Hence
the projection of X onto E? is one dimensional and cannot be a disk.
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The result then follows from theorem 22. Since the number D' in the first part of the statement
of theorem 22 must be zero, the second part of the statement of theorem 22 indicates that the arc
X relative to C has the parametric representation

X = {(zl'zz""zu Ty 040 Ty Oy 0t Ty QD) l z, = zl,Oe-,E’ Zy
= zz‘oe_'ﬁ, z, Tz, e'{, r, = rl'oe_'f’, 91 = 91’0 - a 14, r,
= r e'&,é = 6 -a 14, r, = r et o = o -astd O<'ﬁ<0°}
2.0 2 2,0 2 D D,0 + Yp D0 D g
where
(Zl,o' Zy 00 " ZLo0 T100 O100 T2,00 Y200 "7 Thioe 91),0)

are the coordinates of a point in X.

Theorem 23 provides the promised generalization of Euler's result concerning twice differ-
entiable regular Euler arcs in E? to a characterization of all regular Euler arcs in E®.

S-EXPANDABLE SETS

In definition 3, the concept of an S-shrinkable set was introduced. The purpose of this defini-
tion was to provide a mathematical model for the inituitive concept of a shape preserving shrink-
ing of a set into itself. In a similar fashion, a mathematical model will be provided of the intuitive
idea of a shape preserving expansion of a set. It will then be proved that in a wide class of metric
spaces, the class of sets expandable in a shape preserving fashion is identical to the set of sets
which are shrinkable in a shape preserving fashion.

Let X be a subset of a metric space M. Before discussing the meaning of a shape preserving
expansion of X a definition is needed.

Definition 13: Let f be a map from X intoM. The map f is an expansive S-map if there exists
akK > 1, such that for any x ¢ X, y <X, then

aff(x), f(v)] = Kdlx, yl .

As in the case of a contractive S-map, an expansive S-map on a subset of a complete metric
space has a unique fixed point provided its scale K is greater than one.
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Definition 14: A subset X of a metric space M is canonically S-expandable if there exists a
homotopy H: X@ I ~m such that H: X@0-m is the identity map onX and for all Te (0, 1], H: x@t—m
is an expandable S-map. Alsoifte I,

H(Xet] ¢ HIXeo1] .

Definition 15: A subset Y of a metric space M is S-expandable if there exists an S-map between
Y and a canonically-expandable subset X of M.

This seemingly convoluted manner of defining S-expandable sets was used for the following
reason. Intuitively, the property of S-expandablity is related only to the shape of the set, not to
metric properties which are not properties of "shape," i.e., the diameter of a set. This is the
reason for the distinction between S-expandable sets and canonically S-expandable sets. For in-
stance, if a subset X of a metric space M has the same finite diameter as M, it cannot be canonically
S-expandable in spite of the fact that its points may exhibit the same set of metric ratios and hence
have the same ''shape’ as a subset of M which is canonically S-expandable. The above definition of
S-expandability clearly removes this difficulty.

Theorvem 24: A subset X of a metric space M is S-expandable if and only if it is S-shrinkable.

Proof: 1t is shown that if a subset X of a metric space M is S-shrinkable, it is S-expandable.
The demonstration that if X is S-expandable, it is S-shrinkable is quite similar and will be omitted.

If X is S-shrinkable, there exists an S-homotopy H: XeI-X. Again, for all t « {0, 1], define
f, =H:xet~-x. The proof is complete if we show that f, (x] is canonically S-expandable. We
lose no generality in assuming that f, (x] is not a single point and furthermore, that for t e [0, 1),
K. >K,. For te [0, 1], define g, = f_, f'. The map g, has f [x] as its domain and being the
composition of two S-maps is itself an S-map. Also its scale is K,_, /K, , which is greater than one.
Hence, g, for t ¢ [0, 1] is an expansive S-map. An S-homotopy on f, [x] is constructed by stating
g, = G:f [x]et-m. This defines a map G from f, [x] @ I into M. The map G is an S-homotopy on
f, [x] in which the maps of the homotopy are expansive S-maps and clearly g, is the identity map

on f, [x] . Hence, according to definition 14, f, [x] is canonically S-expandable and X is S-expandable.

A CHARACTERIZATION OF REGULAR EULER SETS IN E®

Theorem 22 represents a powerful result on the structure of regular Euler sets in Er. With
the aid of this theorem a complete characterization of regular Euler sets in E? can be readily ob-
tained. With considerably more difficulty, theorem 22 can be used to characterize regular Euler
arcs in E*. These results represent substantial generalizations of Euler's classical results dis-
cussed previously. At this point it is convenient to discuss what meaning these abstract results
may have in E3. Specifically, there is the question of what shapes are permitted to an object in E3
which can exhibit a shape preserving growth or a shape preserving shrinking. Theorem 24 indicates
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that this constitutes not two questions but one. The question is answered by providing a charac-
terization of regular Euler sets in E3,

Theovem 25: Let X be a regular Euler set in E3. Then X can be represented as the union of
arcs that, with a properly chosen cylinderical coordinate set, can be parameterized as

A= {(z, r,lz = zoe'/ﬁ,r = roe"'g,ﬁ = Ho-a_I/ﬂZOﬁ{ﬁm}’

where o is a positive number and (z,, r,, 6,) are the coordinates of a point in X.

Proof: Since by hypothesis X is a regular Euler set in E’, there exists a regular S-homotopy
H:XeI-X such that for t <t , where t, is a fixed point in I,

f, = H[Xet-X]

has the canonical representation of theorem 16. This means that there exists a coordinate set c
and a cylindrical coordinate representation (z, r, ¢) of points in E® such that if t <t , then f can be

represented as

£, [(z, r, 9)] = (ZKt, rK,, 9+¢t),

where K, is the scale and ¢, is the rotational coefficient of f . Define

g(t) = Ang

t<ty,. It will be shown that

Lim g(t) 7# 0.

This will imply that the symbol D’ in the statement of theorem 22 is zero and an invocation of
theorem 22 concludes the proof.

Let P be an arbitrary point in X; let its cylinderical coordinates relative toc be (z,, r,, 6,).
We define a set B, as follows;

lo
N
o
IA
@
IA

r
/3p = {(Z» r, 9)“)52520, r = 277}-

N
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Intuitively, B, is a cone with apex at the origin of ¢ and containing P. It is shown that if

lim g(t) = 0,
t—0

then B ¢ X. As in the section entitled "'S-Expandable Sets,' for every t < t, define an arc v, as

7e = {z ol = et = rpetio = 6 - g (04 0<hca)

Notice that v, ¢ B, Let 7, () be the parameterization function of v.. Let P’ be an arbitrary point
in B8, with coordinates relative toc of (z', r', 6'). Define

2, = (6" -6, +20m)g(t),

n

and let the cylinderical coordinates of 7, (£, ) be represented as (z_ ,, r_ ., ¢, ). Itis shown that
for any € > 0, there exists a t' <t, such that for any t <t', there exists an integer n such that the
distance between 7, (£,) and P’ is less than e. Clearly, for all n,

e-(@’—9°+2n17)g(t) _

—(6'-6,+2 t
re( Onn)g(),ﬁ = 6' .

V4 =
ZO n,t 0 n,t

n,t
For every t <t,, there exists a unique n(t) such that
VA 2z 22

NOR n(t)+,t

and

> >
Thye = = Tome -

For any n, the distance between z, .and z , . can be shown by simple manipulations to be

z, [e2ﬂg(t) - 1] e(5 _60+2nﬂ)g(t) .

By definition
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This implies that for a given t' <t,,

max [lzn,t, - zn+l't,|:| =z, [ez"g(t) - 1] .
Also by similar reasoning
max [| LV rn+1,t'|] = 1, [e27’g(t) - 1] .
If it is assumed that
lim g(t) = 0,
t—0

then it is clear that for given any € > 0, there exists a t’ <t  such that for some n’,

| o g

and

1
zn,’t, z <e ,

and

|en,‘t -8 < e .

Since 7. (?,)¢ 7., by choosing a sufficiently small t, a point in y, is within a preassigned value

¢ of the arbitrary point P’. But according to theorem 18, for any value ¢, there exists a t’ such
that if t <t', then every point of y, is approximated within ¢ by a point in X. Hence it is clear that
every point in 4 can be arbitrarily closely approximated by a point in X. Since X is closed, this
implies 4 c X, Because the pointP ¢ X was arbitrary, X is starlike and thus contradicts the assump-

tion that X is an Euler set. Hence

lim g(t) # 0,
t—0

and the theorem is proved.
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Theorem 25 shows that any object in E3 that is shrinkable or expandable in the manner defined
by definitions 3 or 15 is either starlike or has the representation given in the statement of theorem
25. The shape defined by theorem 25 is a common geometric form in nature and it is encountered
in sciences as diverse as biology and astronomy. It is hoped that the results of this study will be
of use in explaining the presence of this shape in some situations. For instance, it may be of some
survival value for an organism to grow in a fashion that approximately preserves its original
shape. If other considerations rule out a starlike shape for the organism, then the natural selection
process could lead to a shape approximating the Euler set characterized for E® by theorem 25. The
shells of several snails, for instance, form facsimiles of Euler sets. There are many other bio-
logical examples. Applications of the results of this paper to the explanation of the appearence of
the Euler set geometric form in other disciplines such as astronomy are also possible.
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